Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Small ; : e2402430, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623987

ABSTRACT

The electronic states of metal catalysts can be redistributed by the rectifying contact between metal and semiconductor e.g., N-doped carbon (NC), while the interfacial regulation degree is very limited. Herein, a deep electronic state regulation is achieved by constructing a novel double-heterojunctional Co/Co3O4@NC catalyst containing Co/Co3O4 and Co3O4/NC heterojunctions. When used for dilute electrochemical NO3 - reduction reaction (NO3RR), the as-prepared Co/Co3O4@NC exhibits an outstanding Faradaic efficiency for NH3 formation (FENH3) of 97.9%, -0.4 V versus RHE and significant NH3 yield of 303.5 mmol h-1 gcat -1 at -0.6 V at extremely low nitrate concentrations (100 ppm NO3 --N). Experimental and theoretical results reveal that the dual junctions of Co/Co3O4 and Co3O4/NC drive a unidirectional electron transfer from Co to NC (Co→Co3O4→NC), resulting in electron-deficient Co atoms. The electron-deficient Co promotes NO3 - adsorption, the rate-determining step (RDS) for NO3RR, facilitating the dilute NO3RR to NH3. The design strategy provides a novel reference for unidirectional multistage regulation of metal electronic states boosting electrochemical dilute NO3RR, which opens up an avenue for deep electronic state regulation of electrocatalyst breaking the limitation of the electronic regulation degree by rectifying contact.

2.
BMC Genomics ; 25(1): 62, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225547

ABSTRACT

BACKGROUND: Vesicular stomatitis virus (VSV) is a typical non-segmented negative-sense RNA virus of the genus Vesiculovirus in the family Rhabdoviridae. VSV can infect a wide range of animals, including humans, with oral blister epithelial lesions. VSV is an excellent model virus with a wide range of applications as a molecular tool, a vaccine vector, and an oncolytic vector. To further understand the interaction between VSV and host cells and to provide a theoretical basis for the application prospects of VSV, we analyzed the expression of host differentially expressed genes (DEGs) during VSV infection using RNA-Seq. RESULTS: Our analyses found a total of 1015 differentially expressed mRNAs and 161 differentially expressed LncRNAs in BHK-21 cells infected with VSV for 24 h compared with controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment showed that the differentially expressed lncRNAs and their target genes were mainly concentrated in pathways related to apoptosis, cancer, disease, and immune system activation, including the TNF, P53, MAPK, and NF-kappaB signaling pathways. The differentially expressed lncRNA can modulate immune processes by regulating genes involved in these signaling transmissions. Ten randomly selected DEGs, namely, Il12rb2, F2, Masp2, Mcl1, FGF18, Ripk1, Fas, BMF, POLK, and JAG1, were validated using RT-qPCR. As predicted through RNA-Seq analysis, these DEGs underwent either up- or downregulation, suggesting that they may play key regulatory roles in the pathways mentioned previously. CONCLUSIONS: Our study showed that VSV infection alters the host metabolic network and activates immune-related pathways, such as MAPK and TNF. The above findings provide unique insights for further study of the mechanism of VSV-host interactions and, more importantly, provide a theoretical basis for VSV as an excellent vaccine carrier.


Subject(s)
RNA, Long Noncoding , Vaccines , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , RNA-Seq , Transcriptome
3.
Front Cell Infect Microbiol ; 13: 1265011, 2023.
Article in English | MEDLINE | ID: mdl-38149011

ABSTRACT

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has driven us to explore alternative treatments for the limitation of antimicrobial agents. Lytic phages are considered a promising alternative treatment for CR-hvKP infection. In this study, we reported three novel lytic phages, vB_KpnA_SCNJ1-Z, vB_KpnS_SCNJ1-C, and vB_KpnM_SCNJ1-Y, against a CR-hvKP strain SCNJ1, and they possess genomes of double-stranded DNA with a size of 43,428 bp, 46,039 bp, and 50,360 bp, respectively. Phylogenetic analysis demonstrated that vB_KpnA_SCNJ1-Z belongs to the family Autographiviridae within the class Caudoviricetes, while vB_KpnS_SCNJ1-C and vB_KpnM_SCNJ1-Y are unclassified Caudoviricetes. The phages showed a narrow host range only lysing 1 of 50 tested clinical bacterial strains. The one-step growth curves and stability results showed that the phages displayed relatively short latency periods, with broad pH (pH 3-14) and thermal stabilities (20-60°C). The phages showed significant inhibition of the biofilm formation by SCNJ1 and strong antibacterial activity in vitro. In the mouse model, we demonstrated that administration of a single phage or phage cocktail significantly reduced bacteria loads in the lung, liver, and spleen, and effectively rescued mice from the infection of the SCNJ1 strain, with a survival rate of 70-80%. These findings suggested the three phages have great potential as an alternative therapy with favorable stability and strong antibacterial activity both in vivo and in vitro for the treatment of CR-hvKP infection.


Subject(s)
Bacteriophages , Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Animals , Mice , Bacteriophages/genetics , Klebsiella pneumoniae , Phylogeny , Serogroup , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/therapy
4.
Front Microbiol ; 14: 1282988, 2023.
Article in English | MEDLINE | ID: mdl-38029087

ABSTRACT

Introduction: The tigecycline-resistant Enterobacterales have emerged as a great public concern, and the mobile tet(X) variants and tmexCD-toprJ efflux pump are mainly responsible for the spread of tigecycline resistance. Hospital sewage is considered as an important reservoir of antimicrobial resistance, while tigecycline resistance in this niche is under-researched. Methods: In this study, five Escherichia coli and six Klebsiella pneumoniae strains were selected from a collection of tigecycline-resistant Enterobacterales for further investigation by antimicrobial susceptibility testing, conjugation, whole-genome sequencing, and bioinformatics analysis. Results: All five E. coli strains harbored tet(X4), which was located on different plasmids, including a novel IncC/IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid structure. In addition, tet(X4)-bearing plasmids were able to transfer by conjugation and be stabilized in the recipient in the absence of antibiotics. tmexCD1-toprJ1 was identified in two K. pneumoniae (LZSFT39 and LZSRT3) and it was carried by a novel multidrug-resistance transposon, designated Tn7368, on a novel IncR/IncU hybrid plasmid. In addition, we found that two K. pneumoniae (LZSFZT3 and LZSRT3) showed overexpression of efflux genes acrB and oqxB, respectively, which was most likely to be caused by mutations in ramR and oqxR. Discussion: In conclusion, the findings in this study expand our knowledge of the genetic elements that carry tigecycline resistance genes, which establishes a baseline for investigating the structure diversity and evolutionary trajectories of human, animal, and environmental tigecycline resistomes.

6.
Adv Sci (Weinh) ; 10(31): e2304063, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37712192

ABSTRACT

Unidirectional cascade electron transfer induced by multi-junctions is essential for deep electronic state regulation of the catalytic active sites, while this advanced concept has rarely been investigated in the field of electrocatalysis. In the present work, a dual junction heterostructure (FePc/L-R/CN) is designed by anchoring iron phthalocyanine (FePc)/MXene (L-Ti3 C2 -R, R═OH or F) heterojunction on g-C3 N4 nanosheet substrates for electrocatalysis. The unidirectional cascade electron transfer (g-C3 N4 → L-Ti3 C2 -R → FePc) induced by the dual junction of FePc/L-Ti3 C2 -R and L-Ti3 C2 -R/g-C3 N4 makes the Fe center electron-rich and therefore facilitates the adsorption of O2 in the oxygen reduction reaction (ORR). Moreover, the electron transfer between FePc and MXene is facilitated by the axial Fe─O coordination interaction of Fe with the OH in alkalized MXene nanosheets (L-Ti3 C2 -OH). As a result, FePc/L-OH/CN exhibits an impressive ORR activity with a half-wave potential (E1/2 ) of 0.92 V, which is superior over the catalysts with a single junction and the state-of-the-art Pt/C (E1/2 = 0.85 V). This work provides a broad idea for deep regulation of electronic state by the unidirectional cascade multi-step charge transfer and can be extended to other proton-coupled electron transfer processes.

7.
Front Cell Infect Microbiol ; 13: 1229194, 2023.
Article in English | MEDLINE | ID: mdl-37637463

ABSTRACT

Objective: Proteus mirabilis is the one of most important pathogens of catheter-associated urinary tract infections. The emergence of multidrug-resistant (MDR) P. mirabilis severely limits antibiotic treatments, which poses a public health risk. This study aims to investigate the resistance characteristics and virulence potential for a collection of P. mirabilis clinical isolates. Methods and results: Antibiotic susceptibility testing revealed fourteen MDR strains, which showed high resistance to most ß-lactams and trimethoprim/sulfamethoxazole, and a lesser extent to quinolones. All the MDR strains were sensitive to carbapenems (except imipenem), ceftazidime, and amikacin, and most of them were also sensitive to aminoglycosides. The obtained MDR isolates were sequenced using an Illumina HiSeq. The core genome-based phylogenetic tree reveals the high genetic diversity of these MDR P. mirabilis isolates and highlights the possibility of clonal spread of them across China. Mobile genetic elements SXT/R391 ICEs were commonly (10/14) detected in these MDR P. mirabilis strains, whereas the presence of resistance island PmGRI1 and plasmid was sporadic. All ICEs except for ICEPmiChn31006 carried abundant antimicrobial resistance genes (ARGs) in the HS4 region, including the extended-spectrum ß-lactamase (ESBL) gene blaCTX-M-65. ICEPmiChn31006 contained the sole ARG blaCMY-2 and was nearly identical to the global epidemic ICEPmiJpn1. The findings highlight the important roles of ICEs in mediating the spread of ARGs in P. mirabilis strains. Additionally, these MDR P. mirabilis strains have great virulence potential as they exhibited significant virulence-related phenotypes including strong crystalline biofilm, hemolysis, urease production, and robust swarming motility, and harbored abundant virulence genes. Conclusion: In conclusion, the prevalence of MDR P. mirabilis with high virulence potential poses an urgent threat to public health. Intensive monitoring is needed to reduce the incidence of infections by MDR P. mirabilis.


Subject(s)
Anti-Bacterial Agents , Proteus mirabilis , Phylogeny , Proteus mirabilis/genetics , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Amikacin , Caspase 1
8.
Chem Commun (Camb) ; 59(50): 7807-7810, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37272149

ABSTRACT

Herein, we report a facile strategy for constructing hybrid coordination configurations by combining functionalized graphene quantum dots (GQDs) with CoPc (CoPc/R-GQDs, with R being -NH2 or -OH) for electrochemical CO2 reduction. Benefiting from the high density of functional groups that can be provided by GQDs and the strong electron-donating property of -NH2, the examined CoPc/NH2-GQDs achieved a 100% faradaic efficiency for CO formation (FECO) at -0.8 to -0.9 V vs. RHE, and high FECO (over 90%) over a wide potential range of 500 mV. This work has presented a novel approach for catalyst design, specifically involving molecular engineering of quantum dots, which can also be applied to other essential electrochemical reactions.

9.
J Glob Antimicrob Resist ; 34: 63-66, 2023 09.
Article in English | MEDLINE | ID: mdl-37369327

ABSTRACT

OBJECTIVES: The emergence and spread of colistin resistance in carbapenem-resistant Enterobacteriaceae pose a serious threat to human and animal health. This work aimed to characterise the genetic features of antimicrobial resistance of the carbapenem- and colistin-resistant Enterobacter kobei strain SCLZS19, isolated from hospital sewage, by using whole genome sequencing. METHODS: Antimicrobial susceptibility tests were performed using the disk diffusion method. Whole genome sequencing of SCLZS19 was carried out on the HiSeq 2000 combined with PacBio RSII platforms. Sequence type, plasmid incompatibility types, resistance genes, and insertion elements were identified using multilocus sequence typing, PlasmidFinder, ResFinder, and ISfinder, respectively. Conjugation assays were performed using both broth- and filter-based methods with the azide-resistant Escherichia coli J53 as the recipient. The function of the mcr-9-like variant was determined by gene cloning. RESULTS: E. kobei SCLZS19 had a 4 862 177-bp circular chromosome and nine circular plasmids ranging in size from 4120 bp to 282 472 bp. It carried 11 antibiotic resistance genes, and 10 of them were located on plasmids. The colistin resistance gene mcr-10 was located on a 118 766-bp non-transferable IncF (Y3:A-:B-) plasmid. The carbapenemase gene blaKPC-2 was carried by a self-transmissible IncP6 plasmid, which is epidemic in China. In addition, SCLZS19 also carried an mcr-9-like variant on a IncHI2 (ST1) plasmid. The cloning assay showed that the mcr-9-like variant did not mediate colistin resistance in E. coli DH5α. CONCLUSION: The findings highlight that carbapenem- and colistin-resistant Enterobacterales from water environments may serve as a reservoir for clinically significant antibiotic resistance genes, and continuous surveillance is required.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Humans , Colistin/pharmacology , Carbapenems/pharmacology , Escherichia coli , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genomics
10.
ACS Appl Mater Interfaces ; 15(20): 24346-24353, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184859

ABSTRACT

Precise electronic state regulation through coordination environment optimization by metal-support interaction is a promising strategy to facilitate catalysis reaction, while the limited density of functional groups in the bulk substrate restricts the regulation degree. Herein, different sizes of Ti3C2Tx MXene with hydroxyl (-OH) terminal including the MXene layer (ML-OH, 3 µm), the MXene nanosheet (MNS-OH, 600 nm), and the MXene quantum dot (MQD-OH, 8 nm) were prepared to anchor CoPc, and the effect of -OH density on the performance of electrochemical CO2 reduction was systematically investigated. Notably, a linear relationship was established by plotting reactivity vs hydroxyl density. With the highest -OH density, CoPc/MQD-OH exhibits a superior Faradaic efficiency for CO formation (FECO) of ∼100% at -0.9 to -1.0 V vs RHE and a high FECO of >90% over a wide potential window from -0.8 to -1.4 V. The mechanism exploration shows that the axial coordination interaction of the -OH terminal with Co increases the electron density of the Co site, thus promoting the adsorption and activation of CO2. This work provides a new insight into designing of molecular catalysts with high efficiency and tunable structure for other electrochemical conversions.

11.
Sci Rep ; 13(1): 3634, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869066

ABSTRACT

Antimicrobial resistance, especially carbapenem resistance, poses a serious threat to global public health. Here, a carbapenem-resistant Comamonas aquatica isolate SCLZS63 was recovered from hospital sewage. Whole-genome sequencing showed that SCLZS63 has a 4,048,791-bp circular chromosome and three plasmids. The carbapenemase gene blaAFM-1 is located on the 143,067-bp untypable plasmid p1_SCLZS63, which is a novel type of plasmid with two multidrug-resistant (MDR) regions. Notably, a novel class A serine ß-lactamase gene, blaCAE-1, coexists with blaAFM-1 in the mosaic MDR2 region. Cloning assay showed that CAE-1 confers resistance to ampicillin, piperacillin, cefazolin, cefuroxime, and ceftriaxone, and elevates the MIC of ampicillin-sulbactam two-fold in Escherichia coli DH5α, suggesting that CAE-1 functions as a broad-spectrum ß-lactamase. Amino acid sequences analysis suggested that blaCAE-1 may originate from Comamonadaceae. The blaAFM-1 in p1_SCLZS63 is located in a conserved structure of ISCR29-ΔgroL-blaAFM-1-ble-ΔtrpF-ΔISCR27-msrB-msrA-yfcG-corA. Comprehensive analysis of the blaAFM-bearing sequences revealed important roles of ISCR29 and ΔISCR27 in the mobilization and truncation of the core module of blaAFM alleles, respectively. The diverse passenger contents of class 1 integrons flanking the blaAFM core module make the complexity of genetic contexts for blaAFM. In conclusion, this study reveals that Comamonas may act as an important reservoir for antibiotics-resistance genes and plasmids in the environment. Continuous monitoring for the environmental emergence of antimicrobial-resistant bacteria is needed to control the spread of antimicrobial resistance.


Subject(s)
Comamonas , beta-Lactamases , Anti-Bacterial Agents , Carbapenems
12.
Angew Chem Int Ed Engl ; 62(22): e202303483, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36988074

ABSTRACT

Electrochemically converting NO3 - into NH3 offers a promising route for water treatment. Nevertheless, electroreduction of dilute NO3 - is still suffering from low activity and/or selectivity. Herein, B as a modifier was introduced to tune electronic states of Cu and further regulate the performance of electrochemical NO3 - reduction reaction (NO3 RR) with dilute NO3 - concentration (≤100 ppm NO3 - -N). Notably, a linear relationship was established by plotting NH3 yield vs. the oxidation state of Cu, indicating that the increase of Cu+ content leads to an enhanced NO3 - -to-NH3 conversion activity. Under a low NO3 - -N concentration of 100 ppm, the optimal Cu(B) catalyst displays a 100 % NO3 - -to-NH3 conversion at -0.55 to -0.6 V vs. RHE, and a record-high NH3 yield of 309 mmol h-1 gcat -1 , which is more than 25 times compared with the pristine Cu nanoparticles (12 mmol h-1 gcat -1 ). This research provides an effective method for conversion of dilute NO3 - to NH3 , which has certain guiding significance for the efficient and green conversion of wastewater in the future.

13.
Plants (Basel) ; 12(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36840281

ABSTRACT

"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.

14.
Front Microbiol ; 14: 1092273, 2023.
Article in English | MEDLINE | ID: mdl-36846754

ABSTRACT

Many pathogens cause reproductive failure in sows suffering a broad spectrum of sequelae, including abortions, stillbirth, mummification, embryonic death, and infertility. Although various detection methods, such as polymerase chain reaction (PCR) and real-time PCR, have been widely used for molecular diagnosis, mainly for a single pathogen. In this study, we developed a multiplex real-time PCR method for the simultaneous detection of porcine circovirus type 2 (PCV2), porcine circovirus type 3 (PCV3), porcine parvovirus (PPV) and pseudorabies virus (PRV) associated with porcine reproductive failure. The R 2 values for the standard curve of multiplex real-time PCR of PCV2, PCV3, PPV, and PRV reached to 0.996, 0.997, 0.996, and 0.998, respectively. Importantly, the limit of detection (LoD) of PCV2, PCV3, PPV, and PRV, were 1, 10, 10, 10 copies/reaction, respectively. Meanwhile, specificity test results indicated that multiplex real-time PCR for simultaneous detection is specific for these four target pathogens and does not react with other pathogens, such as classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine epidemic diarrhea virus. Besides, this method had good repeatability with coefficients of variation of intra- and inter-assay less than 2%. Finally, this approach was further evaluated by 315 clinical samples for its practicality in the field. The positive rates of PCV2, PCV3, PPV, and PRV were 66.67% (210/315), 8.57% (27/315), 8.89% (28/315), and 4.13% (13/315), respectively. The overall co-infection rates of two or more pathogens were 13.65% (43/315). Therefore, this multiplex real-time PCR provides an accurate and sensitive method for the identification of those four underlying DNA viruses among potential pathogenic agents, allowing it to be applied in diagnostics, surveillance, and epidemiology.

17.
Microb Pathog ; 174: 105939, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521655

ABSTRACT

Biofilm formation is an important strategy for the colonization of Streptococcus pneumoniae, which can increase the capacity to evade antibiotic and host immune stress. Extracellular choline-binding proteins (CBPs) are required for successful biofilm formation, but the function of extracellular CBPs in the process of biofilm formation is not fully understood. In this study, we tend to analyze the functions of LytA, LytC and CbpD in biofilm formation by in vitro studies with their choline-binding domains (CBDs). Biofilm formation of S. pneumoniae was enhanced when cultured in medium supplemented with CBD-C and CBD-D. Parallel assays with ChBp-Is (choline binding repeats with different C-terminal tails) and character analysis of CBDs reveal a higher isoelectric point (pI) is related to promotion of biofilm formation. Phenotype characterization of biofilms revel CBD-C and CBD-D function differently, CBD-C promoting the formation of membrane-like structures and CBD-D promoting the formation of regular reticular structures. Gene expression analysis reveals membrane transport pathways are influenced with the binding of CBDs, among which the phosphate uptake and PTS of galactose pathways are both up-regulated under conditions with CBDs. Further, extracellular substances detection revealed that extracellular proteins increased with CBD-A and CBD-D, exhibiting as increase in extracellular high molecular weight proteins. Extracellular DNA increased under CBD-A but decreased under CBD-C and CBD-D; Extracellular phosphate increased under CBD-C. These support the alterations in membrane transport pathways, and reveal diverse reactions to extracellular protein, DNA and phosphate of these three CBDs. Overall, our results indicated extracellular CBP participate in biofilm formation by affecting surface charge and membrane transport pathways of pneumococcal cells, as well as promoting reactions to extracellular substances.


Subject(s)
Bacterial Proteins , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Choline/metabolism
18.
Chem Asian J ; 18(2): e202200983, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36373345

ABSTRACT

Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.


Subject(s)
Carbon Dioxide , Hydrogen , Catalysis , Renewable Energy , Thermodynamics
19.
Front Microbiol ; 13: 977356, 2022.
Article in English | MEDLINE | ID: mdl-36090113

ABSTRACT

Multidrug-resistant (MDR) Proteus, especially those strains producing extended-spectrum ß-lactamases (ESBL) and carbapenemases, represents a major public health concern. In the present work, we characterized 27 MDR Proteus clinical isolates, including 23 Proteus mirabilis, three Proteus terrae, and one Proteus faecis, by whole-genome analysis. Among the 27 isolates analyzed, SXT/R391 ICEs were detected in 14 strains, and the complete sequences of nine ICEs were obtained. These ICEs share a common backbone structure but also have different gene contents in hotspots and variable regions. Among them, ICEPmiChn2826, ICEPmiChn2833, ICEPmiChn3105, and ICEPmiChn3725 contain abundant antibiotic resistance genes, including the ESBL gene bla CTX-M-65. The core gene phylogenetic analysis of ICEs showed their genetic diversity, and revealed the cryptic dissemination of them in Proteus strains from food animals and humans on a China-wide scale. One of the isolates, FZP3105, acquired an NDM-1-producing MDR plasmid, designated pNDM_FZP3105, which is a self-transmissible type 1/2 hybrid IncC plasmid. Analysis of the genetic organization showed that pNDM_FZP3105 has two novel antibiotic resistance islands bearing abundant antibiotic resistance genes, among which bla NDM-1 is located in a 9.0 kb ΔTn125 bracketed by two copies of IS26 in the same direction. In isolates FZP2936 and FZP3115, bla KPC-2 was detected on an IncN plasmid, which is identical to the previously reported pT211 in Zhejiang province of China. Besides, a MDR genomic island PmGRI1, a variant of PmGRI1-YN9 from chicken in China, was identified on their chromosome. In conclusion, this study demonstrates abundant genetic diversity of mobile genetic elements carrying antibiotic resistance genes, especially ESBL and carbapenemase genes, in clinical Proteus isolates, and highlights that the continuous monitoring on their transmission and further evolution is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...